·遗传与出生缺陷·

母体X染色体异常对无创产前DNA性染色体非整倍检测结果的影响分析

王杰 郭志远 冀云鹏 朱博 侯丽青 周燕 王晓华

摘要目的对无创产前DNA检测(NIPT)提示性染色体非整倍(SCAs)高风险的病例进行追踪分析,探讨NIPT对于SCAs检测准确度降低的原因。方法应用传统细胞核型分析、大规模并行基因组测序技术及染色体基因芯片检测对3例NIPT提示SCAs高风险的个体进行母体及羊水检测分析。结果经羊水细胞传统核型分析及母亲外周血染色体基因芯片检测,胎儿染色体核型与NIPT检测结果不一致,胎儿染色体核型为46,XN,而母体性染色体存在异常或嵌合。结论母体自身X染色体的异常会导致NIPT对SCAs的检测结果与胎儿性染色体核型不一致,提示在无创产前DNA检测性染色体非整倍性高风险的情况下,需要考虑母亲染色体是否存在异常或嵌合体,应联合应用各种不同的细胞分子遗传学技术进行追踪分析。

关键词无创产前DNA检测; 性染色体非整倍体; 母体嵌合

作者单位:010020 呼和浩特,内蒙古自治区妇幼保健院遗传优生科(王杰,郭志远,冀云鹏,朱博,侯丽青,周燕,王晓华);内蒙古大学哺乳动物生殖生物学及生物技术教育部重点实验室(王杰)

1997年Lo等[1]在孕妇血浆中发现存在胎儿游离DNA。由此开始,国内外学者就胎儿游离DNA的生化特征及相应的各种细胞分子检测技术进行了不断的探索研究[2-3],近年来,一种全新的无创产前DNA检测(noninvasive prenatal DNA testing, NIPT)方法被用于孕期胎儿染色体非整倍体筛查,该项技术在临床上得到了广泛应用。目前NIPT可以对 21-三体、18-三体和13-三体以及其他的性染色体非整倍体(sex chromosome aneuploidies, SCAs)等进行检测[4],相对于传统的血清学筛查,NIPT研究的数据有着更高的准确性和更低的假阳性率[4-7],但是NIPT对于SCAs的敏感度和特异性却略有降低[6-9]。本文通过对NIPT结果为SCAs高风险的孕妇进行追踪分析,综合胎儿和母亲信息探讨NIPT在SCAs检测中准确度降低的原因。

对象与方法

一、对象

选择2015年—2016年在本院经NIPT检测结果为SCAs高风险的3例样本,经告知谈话并签订知情同意书后,进行羊水穿刺胎儿染色体核型分析及孕妇外周血染色体基因芯片检测,对孕妇的白细胞进行染色体芯片检测,并对所有样本进行产后追踪随访。

二、方法:

1.无创产前DNA检测:抽取孕妇外周静脉血5 ml,置于EDTA抗凝管中,分别以1 600 rcf及16 000 rcf低温离心10 min后分离血浆;提取血浆中游离DNA及白细胞基因组DNA;对提取到的游离DNA利用index进行标记经加接头、PCR富集得到标本的DNA文库,经Qubit 2.0检测获得文库pooling,再经过乳液PCR扩增并上机测序获得原始数据。将测得的序列与已知人类参考基因组序列(hg19)比对确定每一测序reads染色体的定位;而后计算每一样本中每条染色体序列数目比率减去正常胎儿孕妇对照组的相应染色体reads比率的均值后,除以对照组相应染色体reads比率的标准差,最终得出标准化Z值。若Z值的绝对值≥3,提示高风险;若-3<Z<3,结果为低风险。

2.细胞培养染色体核型分析:22G穿刺针抽取羊水20~30 ml,离心收获羊水细胞,加5 ml培养液,分装入两个培养瓶中,在37 ℃、5%CO2培养箱中培养7~8 d后更换培养液。在第10~12天,镜检细胞群落长势良好,则加入秋水仙素0.05 ug/ml,继续培养2~4 h;处理后取出培养瓶,加入EDTA胰酶2 ml消化。收集培养后羊水细胞进行低渗、固定、滴片、烤片后进行染色体镜检。使用德国莱卡GSL120染色体核型分析系统软件至少分析5个分裂相,计数20个分裂相,异常增加分析分裂相。

脐带血细胞培养染色体核型分析,常规无菌采集脐带血2 ml,淋巴细胞培养液培养68~72 h后常规收获制片,显带及核型分析同羊水细胞培养染色体核型分析。

3.染色体基因芯片检测:应用Affymetrix公司的CytoScan HD全基因芯片扫描技术检测白细胞全基因组CNVs。按试剂盒说明书操作,将样本依次进行PCR扩增、提纯、定量,片段化处理,再将DNA溶液标记后加入杂交试剂孵育,载入到芯片中进行杂交反应;洗染芯片后扫描分析。用Affymetrix GeneChip Scaner 生成原始cel文件,通过AGCC软件芯片图像显示分析,利用CHAS软件分析结果。

CNVs评估方法:对于检测出的CNVs,首先查询UCSC、DECIPHER、ISCA、PubMed、CNVs多态性数据库(database of genomic variants)、既往文献及在线人类孟德尔遗传数据库(online Mendelian inheritance in man,OMIM),均确认为致病性CNVs。

对3例NIPT结果提示SCAs高风险的样本,进行羊水细胞传统核型分析,发现胎儿核型为46,XN,与NIPT检测结果不一致。分别对母体外周血进行染色体基因芯片的检测,结果分别为46,XX/45,X0,嵌合度为55%;46,XX/45,X0,嵌合度为20%;47,XXX;见表1。出生半年后婴儿进行外周血染色体核型分析与羊水核型一致,提示母体自身X染色体的异常会导致NIPT对SCAs的检测结果与胎儿性染色体核型不一致,表现出假阳性。

表1NIPT SCAs高风险标本信息及检测结果

Table1NIPT SCAs High Risk Specimen’s Information and Test Results

Sample No.Age of pregnantwomanGravidityandparityFamilyHistoryGestationalWeeksNIPTResultsFetal ChromosomeKaryotypeMother Chromosome Karyotype129G2P0No17+1ChrX Z=-48.85046,XN45,X0/46,XX ;55% Chimeric236G2P1No17 ChrX Z=23.247 46,XN45,X0/46,XX ;20% Chimeric335G1P0No14+6ChrX Z=71.027 46,XN47,XXX

人类染色体非整倍体源于生殖细胞减数分裂时或胚胎着床前卵裂期有丝分裂时出现错误[10],绝大多数非整倍体疾病都是致命的,可引起着床前胚胎发育停滞或孕早期胎儿自发性流产,只有很少一部分染色体非整倍体异常但不会导致妊娠失败,如T21(唐氏综合征)、T18(爱德华氏综合征)、T13(帕陶氏综合征)、X染色体单体(特纳综合征)、XXY综合征(克氏综合征)、XXX综合征(三X染色体综合征)、XYY综合征(超雄综合征),新生儿中这些染色体疾病的发病率约为0.3%[11]。近30年,随着产前筛查及诊断应用于胎儿染色体非整倍体的检测[12],使得新生儿染色体疾病的数量有所降低[12-13]。母体血清学筛查、超声以及绒毛穿刺和羊水穿刺技术,与染色体核型分析及NIPT技术的交叉与结合[12,14],对于常见的常染色体非整倍体T21、T18、T13已经有较高的检出率。其中NIPT作为一种高精度的产前筛查方法,具有更高的准确性和更低的假阳性率。但是NIPT对于SCAs的敏感度和特异性却略有降低[6-9],最初在进行NIPT筛查常染色体非整倍体高危孕妇中,SCAs的筛查敏感率较低,在1 916例低危中国孕妇的NIPT筛查中,4个性染色体异常仅2个被筛出,敏感性仅为50%[15]

造成这种检测差异的原因是多方面的,其中包括测序本身的难题,由于X染色体含有较多的GC碱基,并且X和Y染色体标记序列的相似性,另外Y染色体较小亦可能会掩盖数据的真实结果。最近的研究表明,限制性胎盘嵌合(confined placental mosaicism ,CPM[9,16-17]或胎盘嵌合[17-19]以及胎儿嵌合[14]也是造成SCAs检测准确度降低的原因。在本研究中,发现母体染色体的改变或嵌合是导致NIPT对SCAs检测结果造成干扰的一个重要因素,X染色体的有效片段在母体血浆中呈动态变化,影响着胎儿X染色体DNA片段的计算。

存在SCAs异常的孕妇虽然本人通常并不表现出明显症状,但SCAs却是最常见的母体染色体嵌合异常,其发生率为1/400,比大多数一般的常染色体非整倍体高[20]。同时,由于高龄孕妇会经历渐进的和选择性的丢失X染色体,将原来血液中的染色体核型由XX转变为X0/XX嵌合[14,21]。以上原因都使母体本身存在SCAs的几率相应增加。

本研究通过对潜在胎儿SCAs的样本进行多方法的联合检测,最后明确诊断了胎儿的染色体核型,同时分析了NIPT对于SCAs检测出现假阳性的可能原因。提示为进一步提高NIPT对于SCAs的检测准确度,将来对胎儿SCAs高风险的孕妇可结合外周血染色体核型分析或基因芯片检测,以避免SCAs假阳性的出现。

参考文献

1 Lo YMD,Corbetta N,Chamberlain PF,et al.Presence of fetal DNA in maternal plasma and serum.Lancet.1997,350:485-487.

2 刘红彦,吴东,李慧,等.孕妇血浆胎儿游离DNA检测对胎儿染色体拷贝数异常的诊断意义.中华医学遗传学杂志,2012,29:435-438.

3 刘福民,冯霞,王秀英,等.孕妇外周血中胎儿短串联重复序列基因型的检测.中华医学遗传学杂志,2005,22:684-686.

4 Grati FR,Barlocco A,Grimi B,et al.Chromosome abnormalities investigated by non-invasive prenatal testing account for approximately 50% of fetal unbalances associated with relevant clinical phenotypes.Am J Med GenetA,2010,152A:1434-1442.

5 Norton ME,Brar H,Weiss J,et al.Non-Invasive Chromosomal Evaluation (NICE) Study:results of a multicenter prospective cohort study for detection of fetal trisomy 21 and trisomy 18.Am J Obstet Gynecol,2012,207:137.e1.

6 Song Y,Liu C,Qi H,et al.Noninvasive prenatal testing of fetal aneuploidies by massively parallel sequencing in a prospective Chinese population.Prenat Diagn,2013,33:700-706.

7 Bianchi D,Platt L,Goldberg J,et al.genome wide fetal aneuploidy detection by sequencing of maternal plasma DNA:diagnostic accuracy in a prospective,blinded,multicenter study.Obstet Gynecol,2012,206:S367.

8 Samangosprouse C,Banjevic M,Ryan A,et al.SNP-based non-invasive prenatal testing detects sex chromosome aneuploidies with high accuracy.Prenat Diagn,2013,33:643-649.

9 Mazloom AR,Džakula Ž,Oeth P,et al.Noninvasive prenatal detection of sex chromosomal aneuploidies by sequencing circulating cell-free DNA from maternal plasma.Prenat Diagn,2013,33:591.

10 Kuliev A,Verlinsky Y.Meiotic and mitotic nondisjunction:Lessons from preimplantation genetic diagnosis.Hum Reprod Update,2004,10:401-407.

11 Simpson JL.Causes of fetal wastage.Clin Obstet Gynecol,2007; 50:10-30.

12 Driscoll DA,Gross S.Prenatal Screening for Aneuploidy.N Engl J Med,2009,360:2556-2562.

13 Raymond FL,Whittaker J,Jenkins L,et al.Molecular prenatal diagnosis:the impact of modern technologies.Prenat Diagn,2010,30:674-681.

14 Benn P,Cuckle H,Pergament E.Non-invasive prenatal testing for aneuploidy:current status and future prospects.Ultrasound Obstet Gynecol,2013,42:15.

15 Song Y,Liu C,Qi H,et al.Noninvasive prenatal testing of fetal aneuploidies by massively parallel sequencing in a prospective Chinese population.Prenat Diagn,2013,33:700-706.

16 Pan M,Li FT,Li Y,et al.Discordant results between fetal karyotyping and non-invasive prenatal testing by maternal plasma sequencing in a case of uniparental disomy 21 due to trisomic rescue.Prenat Diagn,2013,33:598.

17 Lau TK,Jiang FM,Stevenson RJ,et al.Secondary findings from non-invasive prenatal testing for common fetal aneuploidies by whole genome sequencing as a clinical service.Prenat Diagn,2013,33:602.

18 Hall AL,Drendel HM,Verbrugge JL,et al.Positive cell-free fetal DNA testing for trisomy 13 reveals confined placental mosaicism.Genet Med,2013,15:729.

19 Canick JA,Palomaki GE,Kloza EM,et al.The impact of maternal plasma DNA fetal fraction on next generation sequencing tests for common fetal aneuploidies.Prenat Diagn,2013,33:667.

20 Romana GF,Andrea B,Beatrice G,et al.Chromosome abnormalities investigated by non-invasive prenatal testing account for approximately 50% of fetal unbalances associated with relevant clinical phenotypes.Am J Med Genet A,2010,152A:1434-1442.

21 Russell LM,Strike P,Browne CE,et al.X chromosome loss and ageing.Cytogenet Genome Res,2007,116:181-185.

EffectofmaternalXchromosomeabnormalityonthedetectionofnoninvasiveprenatalDNAchromosomeaneuploidy

WANGJie,GUOZhiyuan,JIYunpeng,ZHUBo,HOULiqing,ZHOUYan,WANGXiaohua.

DepartmentofGenetics,InnerMongoliaMaternityandChildHealthCareHospital,InnerMongolia010021,China

[Abstract]ObjectiveTo explore the cause of the decrease in the accuracy of NIPT for SCAs detection through tracking and analyzing the high risk cases of sex chromosomal aneuploidy (SCAs) by noninvasive prenatal DNA testing (NIPT).MethodsThree individuals detected by NIPT showed with high risk of SCAs, maternal peripheral blood and amniotic fluid of the three individuals were detected by traditional karyotype analysis, large scale parallel genome sequencing and chromosomal microarray detection.ResultsThe chromosome karyotype of fetal chromosomes was not consistent between NIPT testing and traditional karyotype analysis as well as chromosomal microarray detection. The chromosome analysis of the three fetuses was 46,XN which indicated normal karyotype while their mothers presented abnormal or mosaicism.ConclusionThe abnormal X chromosome of mother was a potential cause of the inconsistency between NIPT and fetal chromosome karyotype analysis. It suggested that there is a high risk of chromosome aneuploidy in noninvasive prenatal DNA, and it is necessary to consider whether there is an abnormal or chimerism on the mother′s chromosome. It should be tracked and analyzed by a variety of different molecular genetic techniques.

[Keywords]noninvasive prenatal DNA testing; sex chromosomal aneuploidy; Maternal Mosaicism

通讯作者:王晓华(wangxiaohua2222@163.com)

基金项目:内蒙古自治区自然科学基金面上项目资助(2017MS0820)

(收稿日期:2017-10-26)