·长篇论著·

妊娠早期有机氯农药暴露与妊娠期糖尿病的关联研究

杨向明 韩娜 包鹤龄 金楚瑶 周双 徐金辉 王斌 王海俊 安琳

作者单位:100191,北京大学公共卫生学院妇幼卫生学系(杨向明,包鹤龄,金楚瑶,周双,徐金辉,王海俊,安琳);北京市通州区妇幼保健院妇产科(韩娜);北京大学生育健康研究所(王斌)

【摘要】 目的 研究妊娠早期血浆有机氯农药(OCPs)暴露与妊娠期糖尿病(GDM)发病的关联。方法采用基于出生队列的巢式病例对照设计,从北京市通州区妇幼保健院自2018年6月开始建立的前瞻性队列(PKUBC-T 出生队列)中随机抽取200名GDM孕妇(GDM组),以年龄和口服糖耐量试验孕周为匹配条件1:1匹配200名健康孕妇(对照组)。孕妇基本信息从首次产检的调查问卷中获得,采集孕妇妊娠早期静脉血,采用气相色谱-质谱联用仪定量血浆中20种OCPs浓度,采用条件Logistic回归比较两组OCPs浓度的差异。结果20种OCPs中有5种被检出,4,4-二氯二苯二氯乙烯(p,p′-DDE)的检出率最高为100.0%,灭蚁灵(Mirex)最低为51.3%。5种被检出的OCPs中浓度最高的是异狄氏剂(END),GDM组和对照组的中位数分别为232.4 ng/g血脂和201.1 ng/g血脂,其次是p,p′-DDE,GDM组和对照组的中位数分别为63.9 ng/g血脂和56.2 ng/g血脂。在校正协变量后发现,与最低暴露组相比,END最高暴露组与GDM的关联具有统计学意义(OR=1.84, 95% CI:1.01~3.34),并存在剂量-效应关系。结论北京地区妇女妊娠早期检出的五种OCPs中END高暴露是GDM发病的危险因素,未发现其余四种OCPs暴露与GDM发病存在关联。

【关键词】 有机氯农药; 血浆; 妊娠期糖尿病

妊娠期糖尿病(gestational diabetes mellitus,GDM)是妊娠期首次发生或发现的不同程度的葡萄糖耐量异常[1],是妊娠期最常见的妊娠并发症之一[2]。2017年北京市通州区的一项研究表明,GDM发病率高达20%[3]。GDM与母亲及其子代的短期和长期不良健康结局有关。患过GDM的妇女在未来患2型糖尿病的风险是孕期血糖正常妇女的4.8~11.5倍[4],其子代在成年期有更高的风险发生糖耐量受损和糖尿病[5]。既往研究报道GDM的危险因素包括高龄、糖尿病家族史、巨大儿分娩史、吸烟、饮酒、不良生活方式、孕前超重或肥胖等[6-9]。胎儿性别也可能通过影响母体糖脂代谢,进而影响GDM的发生[10]

有机氯农药(organochlorine pesticide,OCPs)属于持久性有机污染物(persistent organic pollutant,POPs)的一类[11],在20世纪曾被作为一种超强效杀虫剂而广泛使用[12]。虽然中国在1983年就禁止使用包括六氯环已烷、DDT在内的有机氯农药,然而,由于其半衰期长、非极性等特点,至今仍可在人类血液样本中检测到。一般人群接触OCPs主要是通过食用受污染的食品(尤其是牛奶、鸡蛋、肉类、鱼虾等动物性食物)和饮用水[13]。大多数OCPs属于内分泌干扰物,与糖脂代谢密切相关[14],可通过干扰胰岛素功能,增加肥胖和糖尿病的患病风险[15]。由于生理状态的特殊性,孕妇和胎儿是重要的易感人群。截至目前有5篇前瞻性队列研究检测了孕妇血液中OCPs水平且均报告了阴性结果[16-20]。但既往研究均在欧洲或美洲国家开展,未报告过亚洲人群有机氯农药暴露与GDM是否存在关联,且既往研究均未校正妊娠早期身体活动强度、胎儿性别等混杂因素,检测的OCPs种类也不够全面。因此,本研究将探究血浆中20种OCPs与孕妇GDM发生风险的关联。

对象与方法

一、研究对象

本研究采用基于出生队列的巢式病例研究设计,依托北京市通州区妇幼保健院2018年6月开始建立的前瞻性队列(PKUBC-T 出生队列),该队列旨在调查孕前和孕期暴露对母亲及其子代的短期和长期健康影响,已在ClinicalTrials.gov上注册(NCT 03814395)。本研究已通过北京大学生物医学伦理委员会审查批准(IRB00001052-19083)。研究对象纳入标准为:(1)妊娠早期(孕周<14周)在该院建立了孕期健康档案,并计划在该院进行孕期保健和分娩;(2)年龄在18~49岁之间;(3)同意将孕期常规检查剩余血样用于研究。排除标准:(1)孕前患有糖尿病,包括妊娠前诊断的糖尿病以及妊娠早期首次产检诊断的孕前糖尿病(空腹血糖 ≥ 7.0 mmol/L);(2)孕前患有高血压、心脏病、自身免疫性相关疾病、严重的肝脏或肾脏疾病、多囊卵巢综合征,甲状腺疾病;(3)有妊娠期糖尿病史或糖尿病家族史;(4)近三个月有吸烟、饮酒行为。

截至到2019年2月,PKUBC-T 出生队列共有3 304名妇女完成了口服糖耐量试验(oral glucose tolerance test,OGTT),其中593人被诊断为GDM(17.9%)。根据既往文献采用200个病例和200名对照的样本量[21],从患GDM者中随机选择200名GDM孕妇作为病例组,根据孕妇年龄相差在2岁以内、OGTT检测孕周相差在1周以内的匹配原则,用1∶1匹配200名糖耐量正常的孕妇作为对照组。

二、方法

1. GDM诊断标准:GDM诊断标准依据《妊娠合并糖尿病诊治指南(2014)》[22],在妊娠24~28周进行OGTT检测,空腹、服糖后1 h和2 h的血糖界值分别为5.1、10.0和8.5 mmol/L,任意一项达到或超过上述界值,则诊断为GDM。

2. 资料收集:通过调查问卷采集研究对象基本信息和产次、孕妇文化程度、妊娠早期每日膳食总热量、妊娠早期身体活动强度,所有孕妇妊娠早期首次产检时由受过统一培训的护士测量身高及体重,并取空腹外周静脉血,先做孕期常规化验检查,包括空腹血糖、总胆固醇(TC,g/L)、甘油三酯(TG,g/L)以及维生素D水平,然后将剩余血样分离血浆保存在-80℃冰箱。

3. 血浆中有机氯农药分析:取0.6 mL血浆放于16 mL玻璃离心管中,加入0.6 mL乙酸钠缓冲液、20 uL β-葡萄糖醛苷酸酶,在37℃摇床中孵化过夜。加入30 μL浓盐酸、3 mL 环己烷和乙酸乙酯混合液(v/v,4:1),重复萃取3次,合并萃取液,氮吹浓缩。加入0.6 mL 正己烷和甲基叔丁基醚混合溶液(v/v,9:1)复溶,氮吹浓缩。加入1 mL 乙腈复溶,加入QueChers填料,震荡混匀、离心,将上清液转移至1.5 mL透明玻璃小瓶,氮吹浓缩。加入0.4 mL超纯水和0.5 mL 正己烷和甲基叔丁基醚混合液(v/v,1:1),重复萃取3次,合并萃取液,氮吹浓缩。加入0.5 mL 正己烷,转移至用正己烷平衡、二氯甲烷洗脱后的中性氧化铝/硅胶混合柱中,加入20 mL 正己烷和二氯甲烷混合液(v/v,1:1)洗脱,同时用50 mL茄形瓶收集洗脱液。加入OCPs内标混合液,旋蒸浓缩。转移至1.5 mL棕色样品瓶,氮吹浓缩,转移到250 μL衬管中,储存于-80℃ 冰箱中。OCPs的检测采用三重四极杆气相色谱-质谱-质谱联用仪(美国安捷伦7890;美国安捷伦7010B),配有HP-5MS毛细管柱(30 m × 0.25 mm × 0.25 μm),EI源。检测的20种OCPs清单包括:艾氏剂(Aldrin,ALD)、o,p′-滴滴滴(o,p′-Dichlorodiphenyldichloroethane, o,p′-DDD)、p,p′-滴滴滴(p,p′-Dichlorodiphenyldichloroethane, p,p′-DDD)、o,p′-滴滴伊(o,p′-dichlorodiphenyldichloroethylene, o,p′-DDE)、p,p′-滴滴伊(p,p′-dichlorodiphenyldichloroethylene, p,p′-DDE)、o,p′-滴滴涕(o,p′-dichlorodiphenyltrichloroethane, o,p′-DDT)、p,p′-滴滴涕(p,p′-dichlorodiphenyltrichloroethane , p,p′-DDT)、狄氏剂(Dieldrin,DIE)、硫丹Ⅰ(Endosulfan-α,ES1)、硫丹Ⅱ(Endosulfan-β,ES2)、异狄氏剂(Endrin,END)、七氯(Heptachlor,HEC)、环氧七氯(Heptachlor epoxide,HCEAB)、六氯苯(Hexachlorbenzene,HCB)、a-六氯环己烷(α-hexachlorocyclohexane,aHCH)、β-六氯环己烷(β-hexachlorocyclohexane,bHCH)、γ-六氯环己烷(δ-hexachlorocyclohexane,rHCH)、δ-六氯环己烷(γ-hexachlorocyclohexane,dHCH)、异艾氏剂(Isodrine,IDR)、灭蚁灵(Mirex)。根据血脂浓度对OCPs进行校正并报告为ng/g血脂,血脂(TL,g/L)由甘油三酯(TG)和总胆固醇(TC)的浓度计算,TL = 0.92 + 1.31 ×(TG + TC)[23]

4. 统计学处理:血浆中OCPs浓度和孕妇基本特征均不符合正态分布,因此采用中位数和四分位数间距(interquartile range,IQR)进行描述,两组率的比较采用卡方检验,两组中位数的差异采用wilcoxon符号秩和检验。对检出率高于66.7%的OCPs,根据对照组浓度的三分位数将OCPs水平进行三等分,与妊娠期糖尿病发病风险之间的关联采用条件Logistic回归分析,计算比值比(OR)和95%置信区间(95% CI )。进一步用OCPs三组各自的中位数给每组重新赋值生成连续变量,代入模型进行趋势检验。协变量纳入既往文献中报道的GDM危险因素,包括产次、孕妇文化程度、孕前BMI、妊娠早期每日膳食总热量、妊娠早期身体活动强度和胎儿性别。采用R 4.0.2软件进行统计分析。双侧P<0.05被认为具有统计学意义。

结 果

一、孕妇的基本特征

GDM病例组和对照组的社会人口学特征,如产次、孕妇文化程度,在两组间的分布基本均衡(P>0.05);妊娠早期每日膳食总热量、妊娠早期身体活动强度、胎儿性别,以及血脂水平(包括总胆固醇和三酰甘油)在两组之间的差异也无统计学意义(P>0.05)。病例组孕前BMI高于对照组,两组之间差异有统计学意义(P<0.05)。见表1。

表1 GDM组与对照组孕妇人群基本特征比较
Table 1 Characteristics by the gestational diabetes
mellitus (GDM) cases and the corresponding controls

CharacteristicsGDM cases(n=200)Controls(n=200)Age(year) Median(IQR)30.0(4.0)30.0(4.0)Parity [n(%)] Primipara128(64.0)113(56.5) Multipara72(36.0)87(43.5)Maternal education level [n(%)] High school or lower37(18.5)51(25.5) College or higher163(81.5)149(74.5)Pre-pregnancey BMI (kg/m2) [n(%)]∗ <24122(61.0)142(71.0) ≥2478(39.0)58(29.0)Leve of physical activity in the first trimester [n(%)]a Low80(44.0)65(38.0) Middle and high102(56.0)106(62.0)Fetal sex[n(%)]a Boy104(53.1)93(47.9) Girl92(46.9)101(52.1)Daily dietary calories in the first tri-mester (kcal)a Median(IQR)1294.0(518.9)1349.0(637.1)Total cholesterol (g/L) Median(IQR)1.5(0.3)1.6(0.4)Triglyceride(g/L) Median(IQR)1.0(0.6)1.0(0.4)

a47 (11.8%), 2 (0.5%), 10 (2.5%) were missing for the level of physical activity in the first trimester, dietary energy intake in the first trimester and fetal sex, respectively; * P<0.05; IQR:Interquartile range

二、孕妇血浆OCPs水平

本研究共检测血浆中20种OCPs水平,有5种(HCB、p,p′-DDE、END、p,p′-DDT、Merix)高于机器检出限,其余15种(aHCH、bHCH、rHCH、dHCH、HEC、ALD、IDR、HCEAB、opDDE、DIE、ES1、o,p′-DDT、o,p′-DDD、ES2、p,p′DDD)未检出。扣除相应空白对照均值后,p,p′-DDE的检出率最高。为100.0%,Merix最低,为51.3%。5种被检出的OCPs中浓度最高的是END,GDM组和对照组的中位数分别为232.4 ng/g血脂和201.1 ng/g血脂,其次是p,p′-DDE,GDM组和对照组的中位数分别为63.9 ng/g血脂和56.2 ng/g血脂。经统计学检验5种OCPs组间差异没有统计学意义(P>0.05)。见表2。

表2 GDM组和对照组妊娠早期血浆OCPs水平的比较
Table 2 Summaries of plasma OCPs levels by GDM cases and the corresponding controls

OCPsTotal(n=400)DR(%)GDM cases (n=200)DR(%)Median(IQR)ng/g lipidControls (n=200)DR(%)Median(IQR)ng/g lipidHCB99.599.026.8(17.7)100.027.0(18.5)p,p′-DDE100.0100.063.9(72.0)100.056.2(80.6)p,p′-DDT88.593.01.7(2.1)84.01.6(2.3)END99.8 100.0 232.4(191.6)99.5201.1(207.9)Mirex51.3 56.0 1.70(13.0)46.50.0(11.2)

DR:The detection rate after deducting blank control; IQR:Interquartile range

三、OCPs暴露与GDM发病的关联

对检出率高于66.7%的OCPs,根据对照组三分位数分为三分类变量,以最低浓度组为参照组,采用条件Logistic回归进行分析。如表3所示,在未校正混杂因素的情况下,孕妇血浆END暴露最高组较暴露最低组GDM的发病风险显著上升,OR值为1.95(95%CI:1.10~3.46)。模型1校正了产次、孕妇文化程度、妊娠早期每日膳食总热量、妊娠早期身体活动强度和胎儿性别等混杂因素,END暴露与GDM的关联仍然具有统计学意义(P<0.05),OR值为1.95(95%CI:1.08~3.51)。模型2在模型1的基础上进一步校正孕前BMI,OR值略有下降(OR=1.84, 95%CI:1.01~3.34),但依然具有统计学意义(P<0.05)。不管是调整前模型、模型1还是模型2,趋势检验均有统计学意义(P<0.05),即随着END暴露水平的升高,GDM的患病风险也上升,提示END暴露与GDM之间的关联存在剂量-效应关系。未发现其他OCPs与GDM的关联具有统计学意义(P>0.05)。

表3 妊娠早期血浆OCPs暴露与GDM发病的关联
Table 3 Estimated association between GDM incidence and OCPs concentrations in the plasma samples of early-pregnant women

N(%)∗GDM casesControlsCrude modelOR(95% CI)Model 1AdjustedOR (95% CI)Model 2AdjustedOR (95% CI)HCBL155(52.4)50(47.6)1.001.001.00L249(48.5)52(51.5)0.83(0.46-1.49)0.68(0.36-1.26)0.63(0.33-1.18)L343(48.9)45(51.1)0.84(0.45-1.55)0.74(0.38-1.41)0.68(0.35-1.31)p,p′-DDEL147(48.5)50(51.5)1.001.001.00L257(52.8)51(47.2)1.22(0.68-2.17)1.11(0.60-2.04)1.13(0.61-2.1)L343(48.3)46(51.7)1.00(0.57-1.76)0.91(0.48-1.70)0.90(0.48-1.70)p,p′-DDTL141(46.1)48(53.9)1.001.001.00L256(50.9)54(49.1)1.21(0.69-2.11)1.16(0.64-2.09)1.13(0.62-2.05)L350(52.6)45(47.4)1.31(0.73-2.35)1.31(0.71-2.42)1.22(0.65-2.28)ENDaL137(40.7)54(59.3)1.001.001.00L249(50.5)48(49.5)1.45(0.82-2.55)1.47(0.81-2.66)1.34(0.73-2.46)L361(57.5)45(42.5)1.95(1.10-3.46)b1.95(1.08-3.51) b1.84(1.01-3.34) b

*Because some covariables (i.e., level of physical activity intensity in the first trimester, daily dietary calories in the first trimester, and fetal sex) had missing values, the conditional Logistic regression only included 147 case-control pairs; Model 1:adjusted for parity, maternal education, physical activity in the first trimester, daliy dietary energy intake in the first trimester, and fetal sex. Lowest concentrations were used as controls; Model 2:further adjusted for prepregnancy BMI; aTrend test for crude model/model 1/model 2, P<0.05; b P<0.05 for the two-group comparison, utilizing L1 as the reference group.

讨 论

本研究采用基于出生队列的巢式病例对照研究设计,检测北京地区妇女妊娠早期血浆中OCPs浓度,分析妊娠早期OCPs暴露与妊娠期糖尿病发病的关联。在调整混杂因素后,发现妊娠早期血浆END暴露与GDM发病存在关联,且存在剂量-效应关系。

孕前BMI为GDM的重要危险因素。研究表明,孕前BMI较大导致的超重或肥胖是GDM的危险因素,而控制体重(孕前BMI维持在25 kg/m2以下)则可有效降低GDM的发生[24]。本研究中,在调整产次、身体活动、膳食能量摄入等混杂因素的基础上,进一步调整孕前BMI的影响后,发现与低暴露相比,END高暴露是GDM的危险因素,表明在考虑孕前BMI作用的情况下,END高暴露仍然是影响GDM发病的危险因素。

本研究未发现HCB、p,p′-DDE、p,p′-DDT和Merix与GDM的关联具有统计学意义,结论与既往研究一致。2007年Saldana等[25]发现,自述在妊娠早期有过农药接触的孕妇GDM的患病率是非暴露孕妇的两倍,但后续的几项血清检测研究均得到了阴性结果。2016年Smarr等[16]评估了258名孕妇怀孕前血清中9种OCPs含量与GDM风险的关联程度,结果发现,妊娠早期血清中9种OCPs暴露与GDM的发生风险关联无统计学意义,虽然校正混杂后p,p′-DDE的OR值上升。Shapiro等[17]在1 274名孕妇中也未发现DDE与孕妇糖耐量受损或GDM存在关联。2017年Vafeiadi等[18]发现妊娠早期HCB浓度与GDM发生存在关联,但经过孕前BMI、孕期增重、孕期吸烟等混杂因素校正后,关联不具有统计学意义。同样地,Valvi等[19]报告了孕妇妊娠34周血清DDE与GDM存在正相关,但校正后关联不具有统计学意义。2019年Rahman等[20]对POPs混合物进行联合分析,仍然未发现OCPs对GDM的发生存在影响。与上述研究相比,本研究人群HCB暴露水平较高,p,p′-DDE、p,p′-DDT则较低。本研究样本量较小,可能存在检验效能不足的问题,后续研究需要增大样本量。

到目前为止,未发现既往研究报告END与GDM的关联。END是一种用于棉花和谷物等作物的杀虫剂,也用于控制啮齿动物和鸟类。细胞学实验研究表明END可能会通过抑制脂肪细胞分化,进而干扰脂质代谢[26]。一项横断面研究提示一般人群身体总环二烯负荷(包括END、ALD和DIE)与胰岛素样生长因子存在非线性剂量反应关系[27]。2017年西班牙的一项横断面研究报告了END与2型糖尿病不存在关联,但其浓度比本研究低约5倍[28],检出率也低约30%。本研究与该研究人群不同,研究设计、样本收集时间和用于量化OCPs暴露的实验方法也存在差异,发现妊娠早期END暴露与GDM存在关联,提示当前人群END较高浓度暴露对GDM发生可能产生影响,暴露浓度越高,GDM的发生风险可能越高。

综上,本研究发现在北京地区妇女妊娠早期检出的五种OCPs中END暴露与GDM发病存在关联,未发现其余四种OCPs暴露与GDM发病存在关联,为进一步研究GDM发病的环境危险因素提供科学证据。

参考文献

1 American Diabetes Association.Diagnosis and classification of diabetes mellitus.Diabetes Care.2014,37 Suppl 1:S81-90.

2 Hartling L,Dryden DM,Guthrie A,et al.Screening and diagnosing gestational diabetes mellitus.Evid Rep Technol Assess (Full Rep),2012,210:1-327.

3 李楠,唐美莲,田杰.新标准下北京市通州区妊娠期糖尿病发病率及危险因素分析.中国临床医生杂志,2017,45:91-94.

4 Bellamy L,Casas JP,Hingorani AD,et al.Type 2 diabetes mellitus after gestational diabetes:a systematic review and meta-analysis.Lancet,2009,373:1773-1779.

5 Fraser A,Lawlor DA.Long-Term health outcomes in offspring born to women with diabetes in pregnancy.Curr Diab Rep,2014,14:489.

6 McIntyre HD,Catalano P,Zhang C,et al.Gestational diabetes mellitus.Nat Rev Dis Primers.2019,5:47.

7 Chan JCN,Malik V,Jia W,et al.Diabetes in Asia:epidemiology,risk factors,and pathophysiology.JAMA,2009,301:2129-2140.

8 Dooley SL,Metzger BE,Cho N,et al.The influence of demographic and phenotypic heterogeneity on the prevalence of gestational diabetes mellitus.Int J Gynaecol Obstet,1991,35:13-18.

9 Bar-Zeev Y,Haile ZT,Chertok IA.Association between prenatal smoking and gestational diabetes Mellitus.Obstet Gynecol,2020,135:91-99.

10 Al-Qaraghouli M,Fang YMV.Effect of fetal sex on maternal and obstetric outcomes.Front Pediatr,2017,5:144.

11 Porta M,Elisa Puigdomènech,Ballester F,et al.Monitoring concentrations of persistent organic pollutants in the general population:The international experience.Environ Int,2008,34:546-561.

12 Li Q,Lu Y,Wang P,et al.Distribution,source,and risk of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in urban and rural soils around the Yellow and Bohai Seas,China.Environ Pollut,2018,239:233-241.

13 Cao LL,Yan CH,Yu XD,et al.Relationship between serum concentrations of polychlorinated biphenyls and organochlorine pesticides and dietary habits of pregnant women in Shanghai.Sci Total Environ,2011,409:2997-3002.

14 Lee DH.Persistent organic pollutants and obesity-related metabolic dysfunction:focusing on type 2 diabetes.Epidemiol health,2012,34:e2012002.

15 Yilmaz B,Terekeci H,Sandal S,et al.Endocrine disrupting chemicals:exposure,effects on human health,mechanism of action,models for testing and strategies for prevention.Rev Endocr Metab Disord,2020,21:127-147.

16 Smarr MM,Grantz KL,Zhang C,et al.Persistent organic pollutants and pregnancy complications.Sci Total Environ,2016,551-552:285-291.

17 Shapiro GD,Dodds L,Arbuckle TE,et al.Exposure to organophosphorus and organochlorine pesticides,perfluoroalkyl substances,and polychlorinated biphenyls in pregnancy and the association with impaired glucose tolerance and gestational diabetes mellitus:The MIREC Study.Environ Res,2016,147:71-81.

18 Vafeiadi M,Roumeliotaki T,Chalkiadaki G,et al.Persistent organic pollutants in early pregnancy and risk of gestational diabetes mellitus.Environ Int,2017,98:89-95.

19 Valvi D,Oulhote Y,Weihe P,et al.Gestational diabetes and offspring birth size at elevated environmental pollutant exposures.Environ Int,2017,107:205-215.

20 Rahman ML,Zhang C,Smarr MM,et al.Persistent organic pollutants and gestational diabetes:A multi-center prospective cohort study of healthy US women.Environ Int,2019,124:249-258.

21 Lee DH,Steffes MW,Sjödin A,et al.Low dose of some persistent organic pollutants predicts type 2 diabetes:a nested case-control study.Environ Health Perspect,2010,118:1235-42.

22 中华医学会妇产科学分会产科学组,中华医学会围产医学分会妊娠合并糖尿病协作组.妊娠合并糖尿病诊治指南(2014).中国实用乡村医生杂志,2017,24:45-52.

23 Wang B,Jin L,Ren A,et al.Levels of polycyclic aromatic hydrocarbons in maternal serum and risk of neural tube defects in offspring.Environ Sci Technol,2015,49:588-596.

24 McIntyre HD,Catalano P,Zhang C,et al.Gestational diabetes mellitus.Nat Rev Dis Primers,2019,5:47.

25 Saldana TM,Basso O,Hoppin JA,et al.Pesticide exposure and self-reported gestational diabetes mellitus in the Agricultural Health Study.Diabetes Care,2007,30:529-534.

26 Moreno-Aliaga MJ,Matsumura F.Endrin inhibits adipocyte differentiation by selectively altering expression pattern of CCAAT/enhancer binding protein-alpha in 3T3-L1 cells.Mol Pharmacol,1999,56:91-101.

27 Boada LD,Lara PC,Alvarez-León EE,et al.Serum levels of insulin-like growth factor-I in relation to organochlorine pesticides exposure.Growth Horm IGF Res,2007,17:506-511.

28 Henríquez-Hernández LA,Luzardo OP,Valerón PF,et al.Persistent organic pollutants and risk of diabetes and obesity on healthy adults:Results from a cross-sectional study in Spain.Sci Total Environ,2017, 607-608:1096-1102.

The association between organochlorine pesticide exposure in early pregnancy and gestational diabetes

YANG Xiangming, HAN Na, BAO Heling, JIN Chuyao, ZHOU Shuang, XU Jinhui, WANG Bin, WANG Haijun, AN Lin.

Department of Maternal and Child Health, School of Public Health, Peking University, Beijing 100191, China

[Abstract] Objective To explore the association between exposure to organochlorine pesticides (OCPs) during early pregnancy and gestational diabetes (GDM).MethodsWe conducted a nested case-control study based on a birth cohort. From June 2018, 200 GDM pregnant women (i.e., the case group) were randomly selected from a prospective cohort (PKUBC-T birth cohort) established in the Maternal and Child Health Hospital of Tongzhou District, Beijing City. The GDM women were 1:1 matched with 200 healthy pregnant women (i.e., the control group), according to the gestational age and time of OGTT. The basic information of pregnant women was collected by questionnaires during the first visit of prenatal care. Samples of venous blood was collected from the pregnant women during their first trimester, and 20 OCPs concentrations in plasma were quantified by gas chromatography-mass spectrometry. We utilized conditional logistic regression to examine whether the OCPs concentrations in the control group were different from those in the GDM cases.ResultsFive out of twenty OCPs were detected. The highest detection rate (100.00%) was reported for 2,2-bis(4-chlorophenyl)-1,1-dichloroethene (p,p′-DDE). Among the five detected OCPs, the highest was the concentration of Endrin (END), the median of which was 232.4 ng/g lipid and 201.1 ng/g lipid for the GDM cases and the controls, respectively; the second was p,p′-DDE, the median of which was 63.9 ng/g lipid and 56.2 ng/g lipid for the GDM cases and the controls, respectively. After adjustment for multiple covariates, the association between END and GDM was statistically significant (OR=1.84, 95%CI:1.01-3.34; for the high-exposure group, referring to the low-exposure group). We also found a dose-response relationship between END and GDM.ConclusionAmong the 5 OCPs detected in the early-pregnant women in Beijing, we found that the exposure to END was a risk factor for the development of GDM. We didn′t find significant correlation between GDM the other four OCPs.

Key words] Organochlorine pesticide; Plasma; Gestational diabetes mellitus

基金项目:国家自然科学基金项目(81973053, 41771527)

通信作者:安琳(anlin@bjmu.edu.cn )

【中图分类号】 R17;R71

(收稿日期:2020-12-14)